

UNIVERSITÄTS KLINIKUM HEIDELBERG

Towards real-time Monte Carlo dose computation: muscle or brain?

M. Alber^{1,2}, N. Saito^{1,2}, M. Söhn²

¹Department of Radiation Oncology, Universitätsklinikum Heidelberg; ²Scientific RT GmbH, Munich

How to speed up Monte Carlo?	Algorithm efficiency: fewer histories per variance Variance Reduction Techniques (VRT)	Real-time for plann plans. By goal is in code opt
Hardware parallelization: engage more processing units	SCIMOCA	10

e Monte Carlo dose computation will soon be essential ning and quality assurance of online-adapted treatment parallelization in GPUs (muscle) and CPUs (brain), this reach. However, muscle and brain need very specific timization for full performance.

Uncompromised accuracy: match EGSnrc

 $10x10 \text{ mm}^2$ field,

6 MeV mono-energetic point source, 150 mm slab of ICRUlung, 0.25 g/cm³ from 50 mm depth. Blue: SciMoCa, Red: EGSnrc.

Clinical Monte Carlo:

The accelerator head is crucial for performance

Accelerator head simulations are inherently inefficient:

- complex geometries and diverse materials
- many absorbed particles and secondaries
- highly diverse linac designs challenge code optimization

Overall performance is driven by radiation source, collimator model and patient model.

Efficiency: aperture / max field size

Complexity: leaf shape, leakage, scatter

Variability: hundreds of linac designs SciMoCa supports all Varian, Elekta, and Siemens linacs, CyberKnife and Tomotherapy:

16 MLC Types 26 Beam qualities 41 Flattening Filter designs

Photon w = 4

Variance reduction techniques (VRT) work brilliantly for accelerator heads

Variance reduction techniques utilize statistical particle weights to sample the interactions more efficiently:

- **particle splitting** and history repetition re-use sub-sets of a particle history to save repeat operations each split reduces particle weight Example: Photon traverses a leaf
- Russian Roulette discards some less important sub-sets of a particle history and gives higher weight to others each discard increases particle weight Example: Photon scatters in flattening filter

Photon w = 4

The cost of unbalanced particle weight manipulation: convergence efficiency drops

Energy deposition per event in a voxel (tally): solid line: presumed distribution dotted, dashed: for particle weights 0.5 and 2 orange: overall tally distribution following VRT

Voxel uncertainty = error of mean

Broadening the tally distribution requires more histories for the same uncertainty

Dynamically balanced VRT: timings and hardware scaling

	prostate, step & shoot (8 beams, 44 segments)	prostate/LN, dMLC (7 beams, 140 control points)	head & neck, VMAT (2 arcs, 293 control points)	
PTV volume	193.3 сс	SIB-case with 2 PTV volumes: 979.8 cc; 159.9 cc	SIB-case w volur 834.4 cc;	/ith 2 PTV nes: 131.6 cc
voxel size / uncertainty	3 mm / 1%	3 mm / 1%	3 mm / 1%	2 mm / 1%
calc time 16 cores	15.8 sec	55.6 sec	40.9 sec	118.9 sec
calc time 44 cores	5.6 sec	18.2 sec	14.2 sec	39.3 sec

Energy deposition per event

VRT of source- and patient model need to be tuned dynamically (case dependent)

VRT employed in SciMoCa patient model:

Feature	Value/Reference	Similar to	
electron cut-off energy for last Multiple	< 240 keV]
Scatter step			
fractional energy loss of electron Multiple	0.12]
Scatter step			
bremsstrahlung production cut-off energy	> 6 keV		
photon cut-off energy (local energy	< 60 keV		1
deposit)			
minimum/maximum particle weight	0.5 < w < 2.0]
(Russian Roulette ratio)			
maximum photon energy	< 25 MeV		1
KERMA-approximation threshold energy	< 1.0 MeV		1
Material properties	ICRU 46	XVMC	1
Material property computation	Kawrakow 1996, Fippel 1999	VMC, XVMC,	1
		VMC++	
Photon effects	Photoelectric absorption,	XVMC, VMC++]
	Compton scatter, Pair production		
	(Kawrakow 2000a)		
Electron effects	Elastic scatter, Møller,	XVMC, VMC++	1
	Bremsstrahlung (Kawrakow 1996,		
	2000a)		
Positron effects	Elastic scatter, Bhabha,	XVMC, VMC++	1
	Bremsstrahlung		
	(Kawrakow 1996, 2000a)		F
Multiple Scatter theory	Kawrakow 2000b	EGSnrc, VMC++	' к
Multiple Scatter boundary crossing	Kawrakow 1997, 2001	XVMC, VMC++	
Variance reduction techniques	Woodcock tracking,	XVMC, VMC++	
	adaptive history repetition,		K
	adaptive particle splitting,		K
	Russian Roulette,		K
	KERMA-approximation		P
	adaptive history repetition, adaptive particle splitting, Russian Roulette, KERMA-approximation		

ppel 1999: M. Fippel: Med. Phys. 26, 1466 (1999) awrakow 1996: I. Kawrakow, M. Fippel, K. Friedrich: Med. Phys. 23, 445 (1996) awrakow 1997: I. Kawrakow: Med. Phys. 24, 505 (1997) awrakow 2000a: I. Kawrakow, M. Fippel: Phys. Med. Biol. 45, 2163 (2000) awrakow 2000b: I. Kawrakow: Med. Phys. 27, 485 (2000) awrakow 2001: I. Kawrakow in: A. Kling et al. (eds.), Advanced Monte Carlo for Radiation Physics, article Transport Simulation and Applications, Springer-Verlag Berlin Heidelberg (2001)

Conclusions

Source and collimator simulation increases the complexity of MC: advantage CPU VRT tuning causes thread divergence: advantage CPU High computational load, low memory access: high scalability on CPU – future proof Hardware independence: advantage CPU

